

CLAMPED AND SIDEBAND RESOLVED OPTOMECHANICAL CRYSTALS

JOHAN KOLVIK^{1,+,*}, PAUL BURGER^{1,+}, JOEY FREY¹, NILS CIROTH¹ AND RAPHAËL VAN LAER¹

¹ Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology

⁺ These authors contributed equally to this work

^{*}contact: kolvik@chalmers.se

Goal - Signal transduction on classical and quantum level

Optical and mechanical resonances

Strong field confinement for clamped optomechanics

Fabrication

- Requirements for clamped optomechanics
- No leakage to continuum
- Modes at desired frequencies
- Modes strongly coupled

Optomechanical coupling

Conclusion

Clamped optomechanics comparison table

Reference	Liu et al. (est.) $[2]$	Zhang et al. [3]	Sarabalis et al. [4]	This work
$g_0/(2\pi) ({\rm kHz})$	87	51	290	500
$\omega_{\rm m}/(2\pi)~({\rm GHz})$	7.5	0.66	0.48	5.37
$\kappa/(2\pi)$ (GHz)	9.7	4.9	8.2	1.5
$\gamma/(2\pi)$ (MHz)	16	0.6	2.6	6.3
$\omega_{ m m}/\kappa$ (-)	0.77	0.14	0.058	3.6
$\mathcal{C}_0 \equiv 4g_0^2/(\kappa\gamma)$ (-)	$2.0 \cdot 10^{-7}$	$3.5 \cdot 10^{-6}$	$1.6 \cdot 10^{-5}$	$1.1\cdot 10^{-4}$

The presented design shows leading performance when compared to previous efforts in clamped optomechanics. With strong coupling and sideband-resolved operation, there is potential for scalable optomechanical circuitry for both classical and quantum technology applications.

References

[1] J. Kolvik, P. Burger, J. Frey, R. Van Laer, arXiv:2303.18091 (2023). [2] S. Liu, H. Tong, and K. Fang, Nat. Commun. 13 (2022). [3] J. Zhang et al., ACS Photonics 9 (2022). [4] C. J. Sarabalis et al., Optica 4 (2017).

