Design of a release-free piezo-optomechanical quantum transducer

Burger, P., Frey, J., Kolvik, J., Hambraeus, D., & Van Laer, R. (2024). Design of a release-free piezo-optomechanical quantum transducer.
Preprint at https://arxiv.org/abs/2408.15134

Heralding entangled optical photons from a microwave quantum processor


T. Haug, A. F. Kockum, R. Van Laer. “Heralding entangled optical photons from a microwave quantum processor” Preprint at https://arxiv.org/abs/2308.14173v2

Clamped and sideband-resolved silicon optomechanical crystals

We present a new class of clamped OMCs realizing — for the first time — optomechanical interactions in the resolved-sideband regime required for quantum transduction. We observe a record zero-point optomechanical coupling rate of g0/(2π)0.50 MHz along with a sevenfold improvement in the single-photon cooperativity of clamped OMCs.

 

J. Kolvik*, P. Burger*, J. Frey & R. Van Laer. “Clamped and sideband-resolved silicon optomechanical crystals,” Optica 7 (10) (2023). https://doi.org/10.1364/OPTICA.492143
*equally contributed

Optically heralded microwave photon addition

We implement and demonstrate a transducer device and use it to show that by detecting an optical photon we add a single photon to the microwave field. We achieve this by using a gigahertz nanomechanical resonance as an intermediary, and efficiently coupling it to optical and microwave channels through strong optomechanical and piezoelectric interactions.

 

W. Jiang*, F. M. Mayor*, S. Malik, R. Van Laer, T. P. McKenna, R. N. Patel, J. D. Witmer, A. H. Safavi-Naeini. “Optically heralded microwave photon addition,” Nature Physics (2023). https://www.nature.com/articles/s41567-023-02129-w
*equally contributed

Book chapter: The convergence of cavity optomechanics and Brillouin scattering

M. K. Schmidt, C. G. Baker, and R. Van Laer. “The convergence of cavity optomechanics and Brillouin scattering”. in Semiconductors and Semimetals (eds. Eggleton, B. J., Steel, M. J. & Poulton, C. G.) vol. 109 93–131 (Elsevier, 2022). https://doi.org/10.1016/bs.semsem.2022.04.005

Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies

O. Atalar, R. Van Laer, A. H. Safavi-Naeini, A. Arbabian. ”Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies”. Nature Communications 13 (1526), 2022. https://doi.org/10.1038/s41467-022-29204-9

Room-temperature Mechanical Resonator with a Single Added or Subtracted Phonon

R.N. Patel, T.P. McKenna, Z. Wang, J. D. Witmer, W. Jiang, R. Van Laer, C. J. Sarabalis, A. H. Safavi-Naeini. “Room-temperature Mechanical Resonator with a Single Added or Subtracted Phonon”. Physical Review Letters, 2021. 127 (133602). https://doi.org/10.1103/PhysRevLett.127.133602

Acousto-optic modulation of a wavelength-scale waveguide

We demonstrate a collinear acousto-optic modulator in a suspended film of lithium niobate employing a high-confinement, wavelength-scale waveguide. By strongly confining the optical and mechanical waves, this modulator improves a figure-of-merit that accounts for both acousto-optic and electro-mechanical efficiency by orders of magnitude.

 

C. Sarabalis, R. Van Laer, R. Patel, Y. Dahmani, W. Jiang, F. Mayor, and A. Safavi-Naeini, “Acousto-optic modulation of a wavelength-scale waveguide,” Optica, vol. 8, no. 4, pp. 477–483, 2021, https://doi.org/10.1364/OPTICA.413401

Acousto-optic modulation in lithium niobate on sapphire

C. J. Sarabalis, T. P. McKenna, R. N. Patel, R. Van Laer, and A. H. Safavi-Naeini, “Acousto-optic modulation in lithium niobate on sapphire,” APL Photonics, vol. 5, no. 8, p. 086104, May 2020, https://doi.org/10.1063/5.0012288

Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nature Communications, vol. 11, no. 1, p. 1166, Dec. 2020, https://doi.org/10.1038/s41467-020-14863-3