Quantum resource states from heralded microwave-optical Bell pairs


T. Haug, A. F. Kockum, R. Van Laer. “Quantum Resource States from Heralded Microwave-Optical Bell Pairs” Preprint at https://arxiv.org/abs/2308.14173

Optically heralded microwave photon addition

We implement and demonstrate a transducer device and use it to show that by detecting an optical photon we add a single photon to the microwave field. We achieve this by using a gigahertz nanomechanical resonance as an intermediary, and efficiently coupling it to optical and microwave channels through strong optomechanical and piezoelectric interactions.

 

W. Jiang*, F. M. Mayor*, S. Malik, R. Van Laer, T. P. McKenna, R. N. Patel, J. D. Witmer, A. H. Safavi-Naeini. “Optically heralded microwave photon addition,” Nature Physics (2023). https://www.nature.com/articles/s41567-023-02129-w
*equally contributed

Acousto-optic modulation of a wavelength-scale waveguide

We demonstrate a collinear acousto-optic modulator in a suspended film of lithium niobate employing a high-confinement, wavelength-scale waveguide. By strongly confining the optical and mechanical waves, this modulator improves a figure-of-merit that accounts for both acousto-optic and electro-mechanical efficiency by orders of magnitude.

 

C. Sarabalis, R. Van Laer, R. Patel, Y. Dahmani, W. Jiang, F. Mayor, and A. Safavi-Naeini, “Acousto-optic modulation of a wavelength-scale waveguide,” Optica, vol. 8, no. 4, pp. 477–483, 2021, https://doi.org/10.1364/OPTICA.413401

Acousto-optic modulation in lithium niobate on sapphire

C. J. Sarabalis, T. P. McKenna, R. N. Patel, R. Van Laer, and A. H. Safavi-Naeini, “Acousto-optic modulation in lithium niobate on sapphire,” APL Photonics, vol. 5, no. 8, p. 086104, May 2020, https://doi.org/10.1063/5.0012288

Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nature Communications, vol. 11, no. 1, p. 1166, Dec. 2020, https://doi.org/10.1038/s41467-020-14863-3

Resolving the energy levels of a nanomechanical oscillator


P. Arrangoiz-Arriola*, E. A. Wollack*, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator,” Nature, vol. 571, no. 7766, pp. 537–540, Jul. 2019, https://doi.org/10.1038/s41586-019-1386-x
*equally contributed

Lithium niobate piezo-optomechanical crystals

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica, vol. 6, no. 7, p. 845, Jul. 2019, https://doi.org/10.1364/OPTICA.6.000845

Time-of-flight imaging based on resonant photoelastic modulation

O. Atalar, R. Van Laer, C. J. Sarabalis, A. H. Safavi-Naeini, and A. Arbabian, “Time-of-flight imaging based on resonant photoelastic modulation,” Applied Optics, vol. 58, no. 9, p. 2235, Mar. 2019, https://doi.org/10.1364/AO.58.002235

Optomechanical antennas for on-chip beam-steering


C. J. Sarabalis*, R. Van Laer*, and A. H. Safavi-Naeini, “Optomechanical antennas for on-chip beam-steering,” Optics Express, vol. 26, no. 17, p. 22075, Aug. 2018, https://doi.org/10.1364/OE.26.022075
*equally contributed