Year
Tags
Publications
For a full publication list see Google Scholar.
Design of a release-free piezo-optomechanical quantum transducer
Burger, P., Frey, J., Kolvik, J., Hambraeus, D., & Van Laer, R. (2024). Design of a release-free piezo-optomechanical quantum transducer.
Preprint at https://arxiv.org/abs/2408.15134
Heralding entangled optical photons from a microwave quantum processor
T. Haug, A. F. Kockum, R. Van Laer. “Heralding entangled optical photons from a microwave quantum processor” Preprint at https://arxiv.org/abs/2308.14173v2
Clamped and sideband-resolved silicon optomechanical crystals
We present a new class of clamped OMCs realizing — for the first time — optomechanical interactions in the resolved-sideband regime required for quantum transduction. We observe a record zero-point optomechanical coupling rate of g0/(2π)≈0.50 MHz along with a sevenfold improvement in the single-photon cooperativity of clamped OMCs.
J. Kolvik*, P. Burger*, J. Frey & R. Van Laer. “Clamped and sideband-resolved silicon optomechanical crystals,” Optica 7 (10) (2023). https://doi.org/10.1364/OPTICA.492143
*equally contributed
Compact lithium niobate microring resonators in the ultrahigh Q/V regime
Y. Gao, F. Lei, M. Girardi, Z. Ye, R. Van Laer, V. Torres-Company, J. Schröder. “Compact lithium niobate microring resonators in the ultrahigh Q/V regime,” Optics Letters 48 (15) (2023). https://opg.optica.org/ol/abstract.cfm?uri=ol-48-15-3949
Optically heralded microwave photon addition
We implement and demonstrate a transducer device and use it to show that by detecting an optical photon we add a single photon to the microwave field. We achieve this by using a gigahertz nanomechanical resonance as an intermediary, and efficiently coupling it to optical and microwave channels through strong optomechanical and piezoelectric interactions.
W. Jiang*, F. M. Mayor*, S. Malik, R. Van Laer, T. P. McKenna, R. N. Patel, J. D. Witmer, A. H. Safavi-Naeini. “Optically heralded microwave photon addition,” Nature Physics (2023). https://www.nature.com/articles/s41567-023-02129-w
*equally contributed
Book chapter: The convergence of cavity optomechanics and Brillouin scattering
M. K. Schmidt, C. G. Baker, and R. Van Laer. “The convergence of cavity optomechanics and Brillouin scattering”. in Semiconductors and Semimetals (eds. Eggleton, B. J., Steel, M. J. & Poulton, C. G.) vol. 109 93–131 (Elsevier, 2022). https://doi.org/10.1016/bs.semsem.2022.04.005
Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies
O. Atalar, R. Van Laer, A. H. Safavi-Naeini, A. Arbabian. ”Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies”. Nature Communications 13 (1526), 2022. https://doi.org/10.1038/s41467-022-29204-9
III/V-on-lithium niobate amplifiers and lasers
We demonstrate electrically pumped, heterogeneously integrated lasers on thin-film lithium niobate, featuring electro-optic wavelength tunability.
C. Op de Beeck*, F. Mayor*, S. Cuyvers, S. Poelman, J. Herrmann, O. Atalar, T.P. McKenna, Haq B., W. Jiang, J.D. Witmer, G. Roelkens, A.H. Safavi-Naeini, R. Van Laer, B. Kuyken. “III/V-on-lithium niobate amplifiers and lasers”. Optica (2021), vol. 8, iss. 10. https://doi.org/10.1364/OPTICA.438620
*equally contributed
Room-temperature Mechanical Resonator with a Single Added or Subtracted Phonon
R.N. Patel, T.P. McKenna, Z. Wang, J. D. Witmer, W. Jiang, R. Van Laer, C. J. Sarabalis, A. H. Safavi-Naeini. “Room-temperature Mechanical Resonator with a Single Added or Subtracted Phonon”. Physical Review Letters, 2021. 127 (133602). https://doi.org/10.1103/PhysRevLett.127.133602
Acousto-optic modulation of a wavelength-scale waveguide
We demonstrate a collinear acousto-optic modulator in a suspended film of lithium niobate employing a high-confinement, wavelength-scale waveguide. By strongly confining the optical and mechanical waves, this modulator improves a figure-of-merit that accounts for both acousto-optic and electro-mechanical efficiency by orders of magnitude.
C. Sarabalis, R. Van Laer, R. Patel, Y. Dahmani, W. Jiang, F. Mayor, and A. Safavi-Naeini, “Acousto-optic modulation of a wavelength-scale waveguide,” Optica, vol. 8, no. 4, pp. 477–483, 2021, https://doi.org/10.1364/OPTICA.413401
Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer
T. P. McKenna*, J. D. Witmer*, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer,” Optica, vol. 7, no. 12, p. 1737, Dec. 2020, https://doi.org/10.1364/OPTICA.397235.
*equally contributed
Acousto-optic modulation in lithium niobate on sapphire
C. J. Sarabalis, T. P. McKenna, R. N. Patel, R. Van Laer, and A. H. Safavi-Naeini, “Acousto-optic modulation in lithium niobate on sapphire,” APL Photonics, vol. 5, no. 8, p. 086104, May 2020, https://doi.org/10.1063/5.0012288
A silicon‐organic hybrid platform for quantum microwave-to-optical transduction
J. D. Witmer*, T. P. McKenna*, P. Arrangoiz-Arriola, R. Van Laer, E. Alex Wollack, F. Lin, A. K.-Y. Jen, J. Luo, and A. H. Safavi-Naeini, “A silicon‐organic hybrid platform for quantum microwave-to-optical transduction,” Quantum Science and Technology, vol. 5, no. 3, p. 034004, Apr. 2020, https://doi.org/10.1088/2058-9565/ab7eed
*equally contributed
Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency
W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nature Communications, vol. 11, no. 1, p. 1166, Dec. 2020, https://doi.org/10.1038/s41467-020-14863-3
Cryogenic packaging of an optomechanical crystal
T. P. McKenna*, R. N. Patel*, J. D. Witmer*, R. Van Laer*, J. A. Valery, and A. H. Safavi-Naeini, “Cryogenic packaging of an optomechanical crystal,” Optics Express, vol. 27, no. 20, p. 28782, Sep. 2019, https://doi.org/10.1364/OE.27.028782.
*equally contributed
Resolving the energy levels of a nanomechanical oscillator
P. Arrangoiz-Arriola*, E. A. Wollack*, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator,” Nature, vol. 571, no. 7766, pp. 537–540, Jul. 2019, https://doi.org/10.1038/s41586-019-1386-x
*equally contributed
Lithium niobate piezo-optomechanical crystals
W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica, vol. 6, no. 7, p. 845, Jul. 2019, https://doi.org/10.1364/OPTICA.6.000845
Time-of-flight imaging based on resonant photoelastic modulation
O. Atalar, R. Van Laer, C. J. Sarabalis, A. H. Safavi-Naeini, and A. Arbabian, “Time-of-flight imaging based on resonant photoelastic modulation,” Applied Optics, vol. 58, no. 9, p. 2235, Mar. 2019, https://doi.org/10.1364/AO.58.002235
Optomechanical antennas for on-chip beam-steering
C. J. Sarabalis*, R. Van Laer*, and A. H. Safavi-Naeini, “Optomechanical antennas for on-chip beam-steering,” Optics Express, vol. 26, no. 17, p. 22075, Aug. 2018, https://doi.org/10.1364/OE.26.022075
*equally contributed
Electrical driving of X-band mechanical waves in a silicon photonic circuit
R. Van Laer, R. N. Patel, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Electrical driving of X-band mechanical waves in a silicon photonic circuit,” APL Photonics, vol. 3, no. 8, p. 086102, Aug. 2018, https://doi.org/10.1063/1.5042428
Thermal Brillouin noise observed in silicon optomechanical waveguide
R. Van Laer, C. J. Sarabalis, R. Baets, D. Van Thourhout, and A. H. Safavi-Naeini, “Thermal Brillouin noise observed in silicon optomechanical waveguide,” Journal of Optics, vol. 19, no. 4, p. 044002, Apr. 2017, https://doi.org/10.1088/2040-8986/aa600d
Nonlinear optical interactions in silicon waveguides
B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S. P. Gorza, S. K. Selvaraja, S. Massar, R. M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W. M. J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics, vol. 6, no. 2, pp. 377–392, Mar. 2017, https://doi.org/10.1515/nanoph-2016-0001
Unifying Brillouin scattering and cavity optomechanics
R. Van Laer, R. Baets, and D. Van Thourhout, “Unifying Brillouin scattering and cavity optomechanics,” Physical Review A, vol. 93, no. 5, p. 053828, May 2016, https://doi.org/10.1103/PhysRevA.93.053828
Brillouin resonance broadening due to structural variations in nanoscale waveguides
C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New Journal of Physics, vol. 18, no. 2, p. 025006, Feb. 2016, https://doi.org/10.1088/1367-2630/18/2/025006
Net on-chip Brillouin gain based on suspended silicon nanowires
R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. Van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New Journal of Physics, vol. 17, no. 11, p. 115005, Nov. 2015, https://doi.org/10.1088/1367-2630/17/11/115005.
Interaction between light and highly confined hypersound in a silicon photonic nanowire
R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nature Photonics, vol. 9, no. 3, pp. 199–203, Mar. 2015, https://doi.org/10.1038/nphoton.2015.11
Analysis of enhanced stimulated Brillouin scattering in silicon slot waveguides
R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Analysis of enhanced stimulated Brillouin scattering in silicon slot waveguides,” Optics Letters, vol. 39, no. 5, p. 1242, Mar. 2014, https://doi.org/10.1364/OL.39.001242